Enrollment No: _	Exam Seat No:
	~ ~ / ~

C.U.SHAH UNIVERSITY

Winter Examination-2018

Subject Name: Advanced Real Analysis

Subject Code: 5SC03ARA1 Branch: M.Sc. (Mathematics)

Semester: 3 Date: 27/11/2018 Time: 02:30 To 05:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

a. State and prove Lusin's theorem.

SECTION - I

Q-1 **Attempt the Following questions** (07)**a.** Define: σ - finite measure (01)**b.** Suppose (X, \mathcal{A}, μ) is a measure space and E is the set of σ - finite measure. Let (02)F is a measurable subset of E then F is a set of σ - finite measure. c. Let (X, \mathcal{A}) be a measurable space if $\lambda \& \mu$ are two measure on (X, \mathcal{A}) with (02) $\lambda \perp \mu$ and $\lambda \ll \mu$ then $\lambda = 0$. d. Define: Mutually singular measure (02)**Q-2** Attempt all questions **(14)** (05)**a.** Prove that (R, \mathcal{W}, m) is a complete measure. Where R be a set of real numbers, \mathcal{M} be the collection of Lebesgue measurable sets and m be Lebesgue measure. **b.** State and prove Beppo-levi's theorem. (05)c. If $E_1, E_2 \in \mathcal{A}$ then show that $\mu(E_1 \Delta E_2) = 0 \Rightarrow \mu(E_1) = \mu(E_2)$. Moreover if μ is (04)complete and $E_1 \in \mathcal{A}$ with $\mu(E_1 \Delta E_2) = 0$ then $E_2 \in \mathcal{A}$ OR **Q-2** Attempt all questions **(14)**

b. Let (X, \mathcal{A}, μ) be a measure space. Let s and t are two non-negative simple

measurable function on X then prove that $\int_{X} (s+t) d\mu = \int_{X} s d\mu + \int_{X} t d\mu$

(08)

(06)

Q-3		Attempt all questions	(14)
	a.	State and prove Hahn-Decomposition theorem.	(07)
	b.	State and prove Lebesgue Dominated Convergence theorem.	(05)
	c.	Define: Signed measure	(02)
		OR	
Q-3		Attempt all questions	(14)
	a.	State and prove Jordan Decomposition theorem.	(09)
	b.	Let E be measurable set with $0 < v(E) < \infty$ then E contains a positive set A with	(05)
		$\nu(A) > 0.$	
		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a.	Define: Product measure space	(01)
	b.	State Fubini's theorem.	(02)
	c.	Prove that $\ \alpha f\ _{\infty} = \alpha \ f\ _{\infty}$.	(02)
	d.	Suppose $f \in L^p(\mu)$ and $f = g$ a.e. and μ be a complete measure then $g \in L^p(\mu)$.	(02)
Q-5		Attempt all questions	(14)
	a.	State and prove Radon-Nikodym theorem.	(10)
	b.	Show that Holder's inequality is an equality if $\alpha f ^p = \beta g ^q$ a.e. on X, for some	(04)
		$\alpha, \beta \in R - \{0\}$.	
		OR	
Q-5		Attempt all questions	(14)
	a.	State and prove Lebesgue Decomposition theorem.	(08)
	b.	State and prove Holder's inequality.	(06)
Q-6		Attempt all questions	(14)
	a.	Prove that L^p spaces are complete spaces.	(08)
	b.	Let <i>X</i> be a normed space then <i>X</i> is complete iff every absolutely summable series	(06)
		is summable.	
		OR	
Q-6		Attempt all Questions	(14)
	a.	State and prove Caratheodory theorem.	(08)
	b.	Prove the set of all simple measurable function f vanishing outside a set of finite	(06)
		measure is dense in $L^p(\mu)$, where $1 \le p < \infty$.	

